Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices

Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression...

متن کامل

Regularized Estimation of High-dimensional Covariance Matrices

Regularized Estimation of High-dimensional Covariance Matrices

متن کامل

Consistent Estimation of Large - Dimensional Sparse Covariance Matrices

Estimating covariance matrices is a problem of fundamental importance in multivariate statistics. In practice it is increasingly frequent to work with data matrices X of dimension n×p, where p and n are both large. Results from random matrix theory show very clearly that in this setting, standard estimators like the sample covariance matrix perform in general very poorly. In this “large n, larg...

متن کامل

Operator norm consistent estimation of large dimensional sparse covariance matrices

Estimating covariance matrices is a problem of fundamental importance in multivariate statistics. In practice it is increasingly frequent to work with data matrices X of dimension n × p, where p and n are both large. Results from random matrix theory show very clearly that in this setting, standard estimators like the sample covariance matrix perform in general very poorly. In this “large n, la...

متن کامل

Shrinkage Estimators for High-Dimensional Covariance Matrices

As high-dimensional data becomes ubiquitous, standard estimators of the population covariance matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators of sample covariance matrices in the large p, small n setting namely, shrinkage estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetics

سال: 2013

ISSN: 1943-2631

DOI: 10.1534/genetics.113.151217